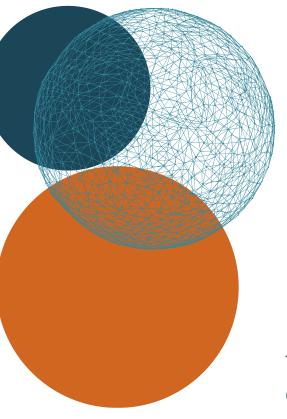







#### **Advanced Noise Control strategies in HarbOuR**


"Collecting data for port noise sources within

ANCHOR: Melilla port area"

Samuele Schiavoni

**Engineer** 







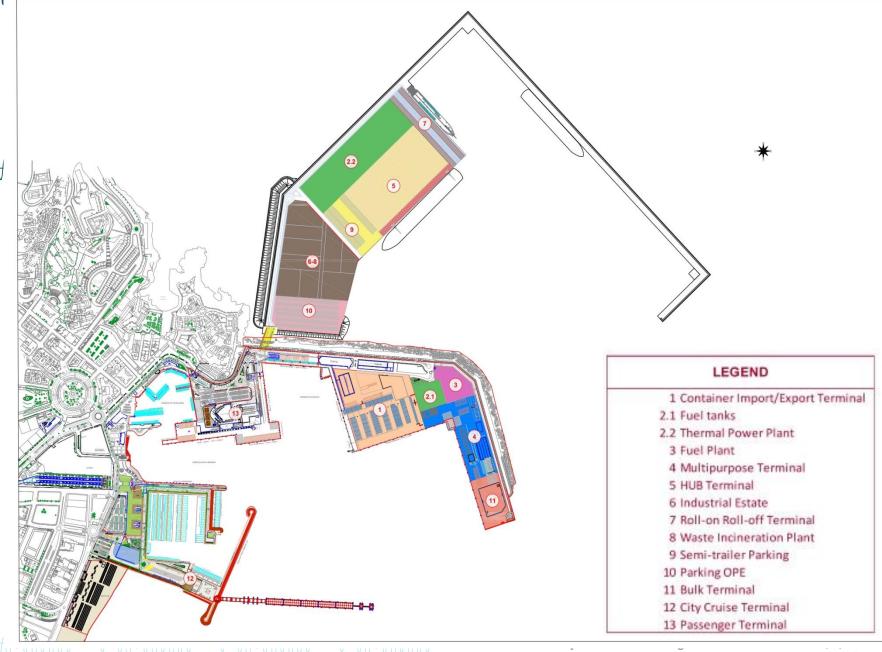
### **Summary**

| Target of the noise mapping activity in Melilla | 03 |
|-------------------------------------------------|----|
| Comparison of Melilla port areas                | 04 |
| Scenario assessment                             | 06 |
| Noise Data sources                              | 07 |
| Database of Port Noise Sources                  | 08 |
| Outcomes of Melilla meeting                     | 10 |
| Noise measurements in Melilla                   | 11 |
| Melilla meetings                                | 17 |
| Progress status                                 | 18 |



# $\mathcal{M}_{\mathcal{M}}$

## Target of the noise mapping activity in Melilla


- 1. Realization of the port expansion (yes/no);
- 2. Standard and peak season;.
- 3. Evolution of the port in 10, 20 and 30 years;
- 4. Contribution of each part of the port;



# MMM Comparison of port areas

| Without port expansion (the port remains as it is, but with more traffic and devices) | With port expansion      |
|---------------------------------------------------------------------------------------|--------------------------|
| Container Terminal                                                                    | Container Terminal (TCM) |
| Ro-Pax and Ro-Ro terminal                                                             | HUB Terminal (new)       |
| Multipurpose T. (cement carrier and Tanker)                                           | Ro-Pax Terminal          |
| Cement plant                                                                          | Ro-Ro Terminal           |
| Thermal energy plant (outside)                                                        | Multipurpose Terminal    |
| Waste incineration plant (outside)                                                    | Cruise Terminal (new)    |
|                                                                                       | Cement plant             |
|                                                                                       | Thermal energy plant     |
|                                                                                       | Waste incineration plant |

ANCHOR LIFE Project 2<sup>nd</sup> Monitoring Visit Teleconference 30/6/2020



Б

#### **Scenario assessment**



| Season:  | PEACK MONTH                    |            |           |                   |    |     |         |        |       |      |         |      |         |        |         |         |      |    |    |    |    |         |              |     |         |    |        |    |    |        |     |     |     |
|----------|--------------------------------|------------|-----------|-------------------|----|-----|---------|--------|-------|------|---------|------|---------|--------|---------|---------|------|----|----|----|----|---------|--------------|-----|---------|----|--------|----|----|--------|-----|-----|-----|
|          | n Pry NO                       |            |           |                   |    |     | WI      | гноит  | ACTI  | VITY |         |      |         |        |         |         |      |    |    |    |    |         |              |     |         |    |        |    |    |        |     |     |     |
| Δ===     |                                |            |           |                   |    |     | WI      | ГН АСТ | IVITY |      |         |      |         |        |         |         |      |    |    |    |    |         |              |     |         |    |        |    |    |        |     |     |     |
| Activity |                                | Uı         | nits      | Hours             |    |     |         |        |       |      | YEAR 10 |      |         |        |         |         |      |    |    |    |    |         |              |     |         |    |        |    |    |        |     |     |     |
| J        |                                |            |           |                   | 1  | 2 3 | 4       | 5      | 6     | 7    | 8       | 9 10 | 11      | 12     | 13      | 14 1    | 5 16 | 17 | 18 | 19 | 20 | 21 2    | 2 2          | 3 2 | 4 25    | 26 | 27     | 28 | 29 | 30     | TOT |     |     |
|          | 1 CONTAINER TERMINAL IMPORT/EX | PORT (TCM) |           |                   |    |     |         |        |       |      |         |      |         |        |         |         |      |    |    |    |    |         |              |     |         |    |        |    |    |        |     |     |     |
| 1.1      | Ship Call Cont Import/Export   | SH         | hip/month | D=7:00-19:00      | 12 | 9   | 12      | 2      |       | 12   | 9       | 1    | 2 9     |        | 12      | $\top$  | 1    | 2  |    | 12 | 9  |         | 12           | 9   | 1       | 2  | $\top$ | 12 | П  |        | 165 | 360 | 46% |
|          | Operation 12 hours             |            | 15        | E = 19:00 - 23:00 |    | 3   |         |        |       |      | 3       |      |         | 3      |         |         |      |    |    |    | 3  |         |              | 3   | Т       |    |        |    |    |        | 15  | 120 | 13% |
|          |                                |            |           | N = 23:00 - 07:00 |    |     | $\perp$ |        |       |      | $\perp$ |      | Г       |        | $\perp$ | $\perp$ |      |    |    |    |    | $\perp$ | $\perp$      |     | $\perp$ |    |        |    |    | $\Box$ | 0   | 240 | 0%  |
| 1.2.1    | Crane № 1:                     | 1          |           | D=7:00-19:00      | 12 | 9   | 12      | 2      |       | 12   | 9       | 1    | 2 9     | ,      | 12      | +       | 1    | 2  |    | 12 | 9  |         | 12           | 9   | 1       | 2  | +      | 12 |    | $\neg$ | 165 | 360 | 46% |
|          | Mobile crane 124 t.            | £ 13       | C1        | E = 19:00 - 23:00 |    | 3   |         |        |       |      | 3       |      |         | 3      |         |         |      |    |    |    | 3  |         |              | 3   |         |    |        |    |    |        | 15  | 120 | 13% |
|          |                                |            |           | N = 23:00 - 07:00 |    | _   | +       |        |       |      | _       | _    | $\perp$ |        | _       | +       |      |    | _  | _  |    | _       | +            |     | +       |    | _      |    |    | _      | 0   | 240 | 0%  |
| 1.2.2    | Crane № 2:                     | _          |           | D=7:00-19:00      |    |     |         |        |       |      | $\top$  |      |         | $\Box$ | $\top$  |         |      |    |    |    |    |         | $^{\dagger}$ |     |         |    |        |    |    |        | 0   | 360 | 0%  |
|          | Type Panamax 40 t.             |            | C2        | E = 19:00 - 23:00 |    |     |         |        |       |      |         |      |         |        |         |         |      |    |    |    |    |         |              |     |         |    |        |    |    |        | 0   | 120 | 0%  |
|          |                                | -          |           | N = 23:00 - 07:00 |    |     |         |        |       |      |         |      |         |        |         |         |      |    |    |    |    |         |              |     |         |    |        |    |    |        | 0   | 240 | 0%  |

| Season:<br>Expansion Pry | PEACK MONTH<br>YES               |            |                   |    |   | ٧ | VITHO  | UTAC    | TIVITY |   |   |    |      |        |        |         |      |    |        |        |       |    |    |        |        |       |         |    |          |     |     |     |
|--------------------------|----------------------------------|------------|-------------------|----|---|---|--------|---------|--------|---|---|----|------|--------|--------|---------|------|----|--------|--------|-------|----|----|--------|--------|-------|---------|----|----------|-----|-----|-----|
|                          |                                  |            |                   |    |   | ٧ | VITH A | CTIVIT  | ſΥ     |   |   |    |      |        |        |         |      |    |        |        |       |    |    |        |        |       |         |    |          |     |     |     |
| Activity                 |                                  | Units      | Hours             |    |   |   |        |         |        |   |   |    |      |        |        |         | R 10 |    |        |        |       |    |    |        |        |       |         |    |          |     |     |     |
|                          |                                  |            |                   | 1  | 2 | 3 | 4 !    | 6       | 7      | 8 | 9 | 10 | 11 1 | 2 1    | 3 14   | 4 15    | 16   | 17 | 18     | 19 2   | 20 21 | 22 | 23 | 24     | 25     | 26 2  | 7 28    | 29 | 30       | TOT |     |     |
| 1                        | CONTAINER TERMINAL IMPORT/EXPORT | тсм)       |                   |    |   |   |        |         |        |   |   |    |      |        |        |         |      |    |        |        |       |    |    |        |        |       |         |    |          |     |     |     |
|                          |                                  |            |                   |    |   |   |        |         |        |   |   |    |      |        |        |         |      |    |        |        |       |    |    |        |        |       |         |    |          |     |     |     |
| 1.1                      | Ship Call Cont Import/Export     | Ship/month | D = 7:00 - 19:00  | 12 | 9 |   | 12     | $\perp$ | 12     | 9 | • | 12 | 9    | 1      | 12     | 9       | 12   | 9  |        | 12     | 9     | 12 | 9  |        | 12     |       | 13      | 2  |          | 183 | 360 | _   |
|                          | Operation 12 hours               | 17         | E = 19:00 - 23:00 |    | 3 |   |        |         |        | 3 |   |    | 3    |        |        | 3       |      | 3  |        |        | 3     |    | 3  |        |        |       |         |    |          | 21  | 120 | 18% |
|                          |                                  |            | N = 23:00 - 07:00 |    |   |   |        |         |        |   |   |    |      |        |        |         |      |    |        |        |       |    |    |        |        |       |         |    |          | 0   | 240 | 0%  |
| 1.2.1                    | Crane № 1:                       |            | D=7:00-19:00      | 12 | 9 |   | 12     | +       | 12     | 9 |   | 12 | 9    | 1      | 12     | 9       | 12   | 9  |        | 12     | 9     | 12 | 9  | $\neg$ | 12     | $\pm$ | 13      | 2  | $\vdash$ | 183 | 360 | 51% |
|                          | Mobile crane 124 t.              | C1         | E=19:00-23:00     |    | 3 |   |        |         |        | 3 |   |    | 3    |        |        | 3       |      | 3  |        |        | 3     |    | 3  |        |        |       |         |    |          | 21  | 120 |     |
|                          |                                  |            | N = 23:00 - 07:00 |    |   |   |        |         |        |   |   |    |      | 1      |        |         |      |    |        | 1      |       |    |    |        | 1      |       |         |    |          | 0   | 240 | 0%  |
| 1.2.2                    | Crane № 2:                       | <b>^</b>   | D = 7:00 - 19:00  |    |   |   | $\pm$  | +       |        |   |   |    |      | $^{+}$ | $\top$ | +       |      |    | $\top$ | $^{+}$ |       |    |    | 1      | $\top$ | $\pm$ | +       | t  | $\vdash$ | 0   | 360 | 0%  |
|                          | Type Panamax 40 t.               | C2         | E = 19:00 - 23:00 |    |   |   |        |         |        |   |   |    |      |        |        |         |      |    |        |        |       |    |    |        |        |       |         |    |          | 0   | 120 | 0%  |
|                          |                                  |            | N = 23:00 - 07:00 |    |   |   |        | $\perp$ |        |   |   |    |      |        |        | $\perp$ |      |    |        | 1      |       |    |    |        | $\Box$ |       | $\perp$ |    |          | 0   | 240 | 0%  |
|                          |                                  |            |                   |    |   |   |        |         |        |   |   |    |      |        |        |         |      |    |        |        |       |    |    |        |        |       |         |    |          |     |     |     |

#### Noise data sources



|   | Noise source                                 | Emission data taken from                                                |                                       |  |  |  |  |  |  |  |  |  |  |
|---|----------------------------------------------|-------------------------------------------------------------------------|---------------------------------------|--|--|--|--|--|--|--|--|--|--|
| M | Cement carrier,<br>Ro-Pax*<br>Tanker         | noise emission has been performed using noise measurement from the sea) |                                       |  |  |  |  |  |  |  |  |  |  |
|   | Cruise ship<br>Ro-Ro, Tractors               | To be defined                                                           |                                       |  |  |  |  |  |  |  |  |  |  |
|   | Container ship                               | J. Witte equation                                                       | $L_{W,A} = 55.4 + 12.2 \log_{10} DWT$ |  |  |  |  |  |  |  |  |  |  |
|   | Forklift<br>(Heavyweight<br>and lightweight) | Deliverables of the GREEN CRUISE                                        | E PORT project                        |  |  |  |  |  |  |  |  |  |  |
|   | Gantry cranes,<br>Trainstainer               | Deliverable of EFFORTS project                                          |                                       |  |  |  |  |  |  |  |  |  |  |
|   | Reach stacker,<br>Reefers                    | Deliverable of the REPORT project                                       |                                       |  |  |  |  |  |  |  |  |  |  |

SoundPLAN database



Wheeled cranes



#### **Database of port noise sources**

- 1. <u>Info about the project available at http://interreg-maritime.eu/it/web/pc-marittimo/home;</u>
- 2. J. Hyrynen, P. Maijala and V. Melin, Noise evaluation of sound sources related to port activities, Euronoise 2009, Edinburgh, Sco 26-28 October 2009;
- 3. <u>Info about the project available at http://efforts-project.tec-hh.net/index.html</u> [Accessed: 19/01/2021];
- 4. <u>J. Witte, Container Terminals and Noise, Internoise 2008, Shanghai, China, 26-29 October 2008;</u>
- 5. <u>Info about the project available at http://www.greencruiseport.eu/Home.html</u> [Accessed: 19/01/2021];
- 6. <u>Info about the project available at https://neptunes.pro/</u> [Accessed: 19/01/2021];
- 7. <u>J. Witte, Noise emission RoRo terminals, Euronoise 2009, Edinburgh, Scotland 26-28 October 2009;</u>
- 8. <u>A. Badino, D. Borelli et al. "Airborne noise emissions from ships: Experimental characterization of the source and propagation over land", Applied Acoustics Applied Acoustics 104 (2016) 158–171;</u>
- 9. A. Di Bella and F. Remigi, "Evaluation and control of cruise ships noise in urban areas", ICSV20, BangKok, Thailand, 7-11 July 2013;
- 10. Danish Ministry of the Environment, Noise from ships in ports Possibilities for noise reduction, Environmental Project No. 1330 2010;
- 11. <u>Lloyd's Register, Procedure for the Determination of Airborne NoiseEmissions from Marine Vessels, January 2019</u>
- 12. Tecnalia, Assessment of the acoustic benefit of the power supply to ships moored in ports (cold ironing), February 2018;
- 13. <u>A. Santander, I. Aspuru and P. Fernandez, OPS Master Plan for Spanish Ports Project. Study of potential acoustic benefits of on-shore power supply at berth, Euronoise 2018, Crete, Greece, 37-31 May2018;</u>
- 14. <u>L. Fredianelli et al, Pass-by Characterization of Noise Emitted by Different Categories of Seagoing Ships in Ports, Sustainability 2020, 12, 1740; doi:10.3390/su12051740;</u>
- 15. Info about the project available at https://cordis.europa.eu/project/id/234182/it;
- 16. Deliverable 5.2 of the SILENV project, "Noise and Vibration label proposal", 2012;
- 17. D. Borelli et al., "Holistic control of ship noise emissions", Noise Mapping, 2016; 3:107–119;
- 18. <u>A. Badino et al. "Control of airborne noise emissions from ships", International Conference on Advances and Challenges in Marine Noise and Vibration 21MARNAV 2012, Glasgow, Scotland, UK, 5-7 September 2012;</u>
- 19. D. Borelli et al., "Measurements of airborne noise emitted by a ship at quay", ICSV22, Florence, Italy, 12-16 July 2015;
- 20. <u>S. Curcuruto et al., "Environmental impact of noise sources in port areas: a case study", ICSV22, Florence, Italy, 12-16 July 2015;</u>
- 21. ISPRA data. These data are reported in the Ph.D. Thesis of Giuseppe Marsico
- 22. <u>Draganchev et al., "Experimental and theoretical research of noise emitted by merchant ships in port", ICSV19, Vilnius, Lithuania, 8-12 July 2012;</u>
- 23. Stampe, Ole B., Lyd i VVS-anlæg, Skarland Press AS, 1998;
- 24. Umweltbundesamt. (2016, August). Forum Schall: Emissionsdatenkatalog 2016;
- 25. <u>LAIRM CONSULT GmbH. (2013). Schalltechnische Untersuchung für das geplante Cruise Center 3 in Hamburg-Steinwerder. Hamburg:</u>
  Hamburg Port Authority;
- 26. <u>L Moro, "Setting of on board noise sources in numerical simulation of airborne outdoor ship noise", 9<sup>th</sup> Youth Symposium on Experimental Solid Mechanics, Trieste, Italy, July 7-10, 2010;</u>



# **Database of port noise sources**



# **LINK HERE**



## **Outcomes of the Melilla meeting**

- 1. Noise emission characterization of some sources that cannot be adequately assessed using database or the outcome of the scientific literature;
- 2. When the measurements activities were finished or interrupted for technical reasons, perform meeting with the staff of the Melilla port authority in charge with the expansion project.



# $\mathcal{M}_{\mathcal{M}}$

#### Noise measurements in Melilla

The measurements allowed to characterize the noise emission of:

- 1. Two Ro-Pax ships;
- 2. A Cement Carrier;
- 3. An Oil Tanker;
- 4. Cement Plant;
- 5. The HVAC units in the roof of the Estación Maritima de Melilla;

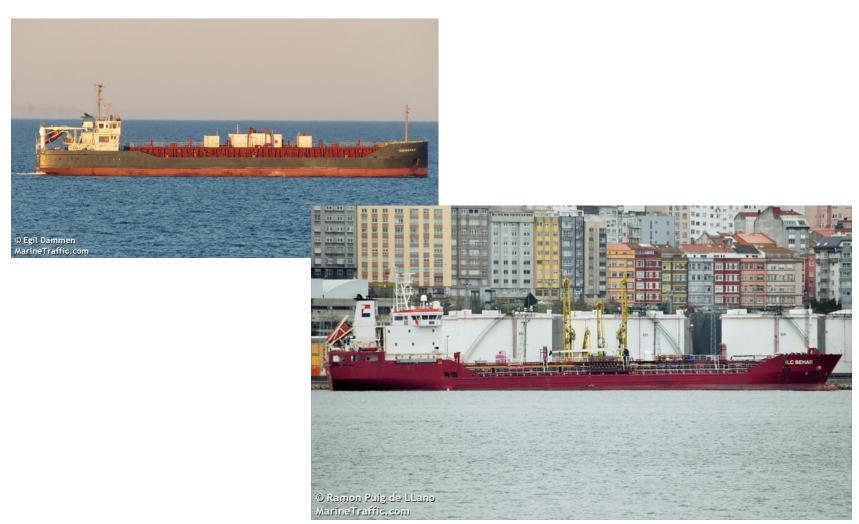
MMM

# Ro-Pax ship



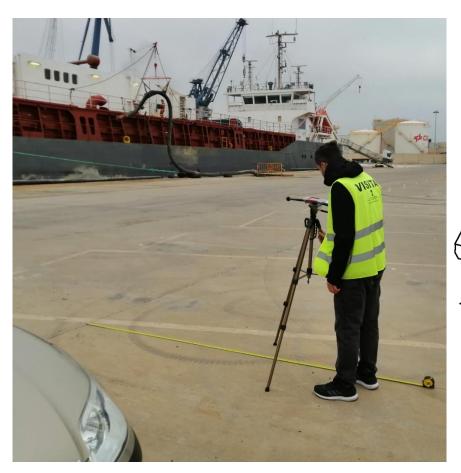


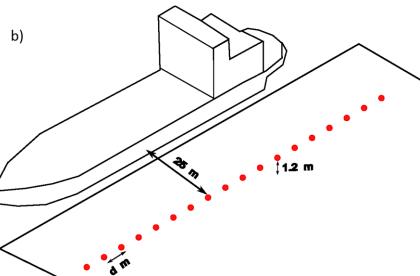
# **Ro-Pax ship**






# MMM/~~


# **Cement carrier and Oil Tanker**






# SILENV procedure: Cement carrier and Oil Tanker







# **HVAC** units







# Melilla Meetings

- Guide data collection
- 2. Some hints on port expansion;.
- 3. Explanation of the activities that will be performed in the new port.





# **Current progress status**

# **LINK HERE**





# Thank you for your attention

#### schiavoni@metexis.it

### **Special thanks to:**

Jaime Bustillo Galvez, Autoritad Portuaria de Melilla and all his staff

Juan Manuel Paramio Cabrera, Autoritad Portuaria de Melilla

Davide Borelli, University of Genoa

**CECOR** 

Ciudad Autonoma de Melilla